Development of radiochemical method for separation of ²³¹Pa

Introduction

- * ²³¹Pa, daughter product of naturally occurring ²³⁵U (0.34 μg kg⁻¹)
- * ²³¹Pa produced in Thorium fuel cycle by (n,2n) reaction of ²³²Th (artificial)
- The richest Indian sources of ²³¹Pa are the
 - (a) Plant process streams of the uranium mill of Jaduguda
 - (b) Monazite processing plant, IRE, Aluva (Siliceous cake)

Difficulty in direct determination by Gamma spectrometry

- (i) very low concentration of ²³¹Pa, (ii) very low abundance (yield) of gamma rays,
- (iii) long half-life ($t_{1/2} = 32,760y$), (iv) severe spectral interference and high background from daughter products of Th and U

Preconcentration and estimation of ²³¹Pa

- * Specific preconcentration of ²³¹Pa on MnO₂ via insitu precipitation.
- ♣ Determination of ²³¹Pa using gamma spectrometry.
- * Concentration of 231 Pa in siliceous cake: $(6.4 \pm 0.33) \mu g kg^{-1}$
- *Advantages: Single step complete fusion, Yield: 80-85 %